Roll No. \square Total No. of Pages : 03
Total No. of Questions: 09
B.Tech. (Sem.-1 ${ }^{\text {st }}$)

ENGINEERING MATHEMATICS-I
Subject Code : BTAM-101 (2011 \& 2012 Batch)
Paper ID : [A1101]

Time : 3 Hrs.

Max. Marks : 60

INSTRUCTION TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION - B \& C. have FOUR questions each.
3. Attempt any FIVE questions from SECTION B \& C carrying EIGHT marks each.
4. Select atleast TWO questions from SECTION - B \& C.

SECTION-A

1. Answer briefly :
(a) Identify the symmetry of the polar curve $r=\sin \frac{\theta}{2}$.
(b) If $u=\mathrm{F}(x-y, y-z, z-x)$, then show that $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0$.
(c) If $\mathrm{J}=\frac{\partial(u, v)}{\partial(x, y)}, \mathrm{J}^{\prime}=\frac{\partial(x, y)}{\partial(u, v)}$, then show that $\mathrm{JJ}^{\prime}=1$, where J stands for Jacobian.
(d) Evaluate $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} d y d x$.
(e) Find the polar equation of the curve $x^{2}+(y-3)^{2}=9$ given in Cartesian form .
(f) State Gauss Divergence Theorem.
(g) If $\overrightarrow{\mathrm{F}}=\operatorname{grad}\left(x^{3}+y^{3}+z^{3}-3 x y z\right)$, then find $\operatorname{div} \overrightarrow{\mathrm{F}}$.
(h) Find the work done by the force field $\overrightarrow{\mathrm{F}}=\left(y-x^{2}\right) \hat{i}+\left(z-y^{2}\right) \hat{j}$ $+\left(x-z^{2}\right) \hat{k}$ over the curve $\vec{r}(t)=t \hat{i}+t^{2} \hat{j}+t^{3} \hat{k}, 0 \leq t \leq 1$, from $(0,0,0)$ to $(1,1,1)$.
(i) Obtain the local extreme values of the function $f(x, y)=x y$.
(j) The period of a simple pendulum is $\mathrm{T}=2 \pi \sqrt{l / g}$, find the maximum error in T due to possible error up to 1% in l and 2.5% in g .

SECTION-B

2. (a) Trace the curve $y^{2}(a-x)=x^{2}(a+x)$ by giving all salient features in detail.
(b) If ρ_{1} and ρ_{2} be the radii of curvature at the extremities of two conjugate diameters of an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, then prove that $\left(\rho_{1}\right)^{2 / 3}+\left(\rho_{2}\right)^{2 / 3}(a b)^{2 / 3}=a^{2}+b^{2}$.
3. (a) Find the entire length of the Cardiode $r=a(1+\cos \theta)$. Also show that upper half is bisected by the ray $\theta=\pi / 3$.
(b) The area bounded by an arc of the curve $x=a(\theta-\sin \theta), y=a(1-\cos \theta), 0 \leq \theta \leq 2 \pi$
and the x-axis is revolved around x-axis. Find the volume of the solid generated.
$(4,4)$
4. (a) Transform the equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ into polar co-ordinates.
(b) If $u=\sin ^{-1} \frac{x+y}{\sqrt{x}+\sqrt{y}}$, then prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\frac{1}{2} \tan u$.
5. (a) A rectangular box open at the top is to have a volume of 32 cubic feet. Find the dimensions of the box requiring the least material for its construction.
(b) Expand $f(x, y)=\sin x y$ in ascending powers of $(x-1)$ and $(y-(\pi / 2))$ up to second degree terms.

SECTION-C

6. (a) Find the area lying inside the curve $r=a(1+\cos \theta)$ and outside the curve $r=a$.
(b) Evaluate: $\int_{0}^{1} \int_{x^{2}}^{2-x} x y d x d y$ by changing the order of integration.
7. (a) Prove the identity $\nabla \times(\overrightarrow{\mathrm{F}} \times \overrightarrow{\mathrm{G}})=\overrightarrow{\mathrm{F}}(\nabla \cdot \overrightarrow{\mathrm{G}})-\overrightarrow{\mathrm{G}}(\nabla \cdot \overrightarrow{\mathrm{F}})+(\overrightarrow{\mathrm{G}} \cdot \nabla) \overrightarrow{\mathrm{F}}$ $-(\overrightarrow{\mathrm{F}} \cdot \nabla) \overrightarrow{\mathrm{G}}$.
(b) If $\overrightarrow{\mathrm{F}}=4 x z \hat{i}-y^{2} \hat{j}+y z \hat{k}$, then evaluate $\iint_{\mathrm{S}} \overrightarrow{\mathrm{F}} \cdot \hat{\mathrm{N}} d s$, where S is the surface of the cube bounded by $x=0, x=1, y=0, y=1, z=1$, $z=1$.
$(4,4)$
8. (a) Verify Stoke's theorem for the field $\overrightarrow{\mathrm{F}}=(2 x-y) \hat{i}-y z^{2} \hat{j}-y^{2} z \hat{k}$, over the upper half surface of $x^{2}+y^{2}+z^{2}=1$ bounded by its projection on the $x y$-plane.
(b) Compute the line integral $\int_{\mathrm{C}}\left(y^{2} d x-x^{2} d y\right)$ about the triangle whose vertices are $(1,0),(0,1),(-1,0)$.
9. (a) Verify Green's theorem for $\oint_{\mathrm{C}}\left[\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y\right]$, where C is the boundary of the region by $x=0, y=0, x+y=1$.
(b) Evaluate the triple integral $\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} x y z d x d y d z$.
